Back to Search Start Over

Global Carbon Budget 2021.

Authors :
Friedlingstein, Pierre
Jones, Matthew W.
O'Sullivan, Michael
Andrew, Robbie M.
Bakker, Dorothee C. E.
Hauck, Judith
Le Quéré, Corinne
Peters, Glen P.
Peters, Wouter
Pongratz, Julia
Sitch, Stephen
Canadell, Josep G.
Ciais, Philippe
Jackson, Rob B.
Alin, Simone R.
Anthoni, Peter
Bates, Nicholas R.
Becker, Meike
Bellouin, Nicolas
Bopp, Laurent
Source :
Earth System Science Data. 2022, Vol. 14 Issue 4, p1917-2005. 89p.
Publication Year :
2022

Abstract

Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO 2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO 2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO 2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO 2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ± 1 σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 ± 0.5 GtC yr -1 (9.3 ± 0.5 GtC yr -1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr -1 , for a total anthropogenic CO 2 emission of 10.2 ± 0.8 GtC yr -1 (37.4 ± 2.9 GtCO 2). Also, for 2020, GATM was 5.0 ± 0.2 GtC yr -1 (2.4 ± 0.1 ppm yr -1), SOCEAN was 3.0 ± 0.4 GtC yr -1 , and SLAND was 2.9 ± 1 GtC yr -1 , with a BIM of - 0.8 GtC yr -1. The global atmospheric CO 2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOS relative to 2020 of + 4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr -1 persist for the representation of annual to semi-decadal variability in CO 2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO 2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at 10.18160/gcp-2021 (Friedlingstein et al., 2021). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18663508
Volume :
14
Issue :
4
Database :
Academic Search Index
Journal :
Earth System Science Data
Publication Type :
Academic Journal
Accession number :
156761368
Full Text :
https://doi.org/10.5194/essd-14-1917-2022