Back to Search Start Over

Analysis on single nucleotide polymorphisms of the PeTPS-(-)Apin gene in Pinus elliottii.

Authors :
Lei, Lei
Zhang, Lu
Cai, Junhuo
Yi, Min
Zhao, Heng
Ma, Jikai
Lai, Meng
Jin, Cangfu
Source :
PLoS ONE. 5/27/2022, Vol. 17 Issue 5, p1-15. 15p.
Publication Year :
2022

Abstract

Background: Resin-tapping forests of slash pine (Pinus elliottii) have been set up across Southern China owing to their high production and good resin quality, which has led to the rapid growth of the resin industry. In this study, we aimed to identify molecular markers associated with resin traits in pine trees, which may help develop marker-assisted selection (MAS). Methods: PeTPS-(-)Apin gene was cloned by double primers (external and internal). DnaSP V4.0 software was used to evaluate genetic diversity and linkage disequilibrium. SHEsis was used for haplotype analysis. SPSS was used for ANOVA and χ2 test. DnaSP v4.0 software was used to evaluate genetic diversity. Results: The full length PeTPS-(-)Apin gene was characterized and shown to have 4638 bp, coding for a 629-amino acid protein. A total of 72 single nucleotide polymorphism (SNP) loci were found. Three SNPs (CG615, AT641 and AG3859) were significantly correlated with α -pinene content, with a contribution rate > 10%. These SNPs were used to select P. elliottii with high α-pinene content, and a 118.0% realistic gain was obtained. Conclusions: The PeTPS-(-)Apin gene is not uniquely decisive for selection of plus slash pines with stable production, high yield, and good quality, but it can be used as a reference for selection of other resin-producing pines and other resin components. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
17
Issue :
5
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
157132370
Full Text :
https://doi.org/10.1371/journal.pone.0266503