Back to Search
Start Over
Improving Spatial Disaggregation of Crop Yield by Incorporating Machine Learning with Multisource Data: A Case Study of Chinese Maize Yield.
- Source :
-
Remote Sensing . May2022, Vol. 14 Issue 10, p2340-2340. 19p. - Publication Year :
- 2022
-
Abstract
- Spatially explicit crop yield datasets with continuous long-term series are essential for understanding the spatiotemporal variation of crop yield and the impact of climate change on it. There are several spatial disaggregation methods to generate gridded yield maps, but these either use an oversimplified approach with only a couple of ancillary data or an overly complex approach with limited flexibility and scalability. This study developed a spatial disaggregation method using improved spatial weights generated from machine learning. When applied to Chinese maize yield, extreme gradient boosting (XGB) derived the best prediction results, with a cross-validation coefficient of determination (R2) of 0.81 at the municipal level. The disaggregated yield at 1 km grids could explain 54% of the variance of the county-level statistical yield, which is superior to the existing gridded maize yield dataset in China. At the site level, the disaggregated yields also showed much better agreement with observations than the existing gridded maize yield dataset. This lightweight method is promising for generating spatially explicit crop yield datasets with finer resolution and higher accuracy, and for providing necessary information for maize production risk assessment in China under climate change. [ABSTRACT FROM AUTHOR]
- Subjects :
- *CROP yields
*CROP quality
*MACHINE learning
*CLIMATE change
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 14
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 157243879
- Full Text :
- https://doi.org/10.3390/rs14102340