Back to Search Start Over

Study on a Hydrogel for Adsorption of Chloride Ions in Cementitious Materials.

Authors :
Cao, Meng
Wu, Lili
Zhang, Guixia
Yang, Ying
Chen, Wei
Li, Qiu
Tang, Pei
Chen, Wanyu
Source :
Polymers (20734360). May2022, Vol. 14 Issue 10, p2081-2081. 14p.
Publication Year :
2022

Abstract

Chloride ions in the seaside environment can corrode the steel reinforcement in concrete, which greatly endangers the safety of seaside structures. As an excellent adsorption material, hydrogel is widely used in the field of water treatment but is rarely used in cementitious materials. In this study, a polyacrylamide–chitosan hydrogel (PAMC) was prepared with N,N-methylenebisacrylamide as the cross-linking agent and acrylamide as the monomer. The prepared PAMC gel could effectively adsorb chloride ions in simulated seawater and simulated sea sand environments, and the maximum adsorption capacity of chloride ions by PAMC-1 (prepared from 2.5 g acrylamide and 1% content of N,N-methylenebisacrylamide relative to acrylamide) gels in simulated seawater was 55.53 mg/g. The adsorption behavior of the PAMC gels in solution fit the Langmuir isotherm model. The composition and morphology of the PAMC gel were characterized, and the responsiveness of the PAMC gel to the environment was studied. The results showed that the PAMC gels adsorbed better in alkaline environments and thus could be used in alkaline cement-based environments. The mortar sample containing the PAMC-1 gel had higher resistance to chloride ion penetration, and the chloride ion content at 7.5–10mm from the surface of the sample cured for 28 days was reduced by 41.4% compared to the samples without the gel. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
14
Issue :
10
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
157244211
Full Text :
https://doi.org/10.3390/polym14102081