Back to Search Start Over

Detection of bulk feed volume based on binocular stereo vision.

Authors :
Liu, Zhihai
Dai, Zhenrui
Zeng, Qingliang
Liu, Jinxia
Liu, Feiyi
Lu, Qing
Source :
Scientific Reports. 6/4/2022, Vol. 12 Issue 1, p1-17. 17p.
Publication Year :
2022

Abstract

The volume detection of medical mice feed is crucial to understand the food intake requirements of mice at different growth stages and to grasp their growth, development, and health status. Aiming at the problem of volume calculation in the way of feed bulk in mice, a method for detecting the bulk volume of feed in mice based on binocular stereo vision was proposed. Firstly, the three-dimensional point coordinates of the feed's surface were calculated using the binocular stereo vision three-dimensional reconstruction technology. The coordinates of these dense points formed a point cloud, and then the projection method was used to calculate the volume of the point cloud; and finally, the volume of the mice feed was obtained. We use the stereo matching data set provided by the Middlebury evaluation platform to conduct experimental verification. The results show that our method effectively improves the matching degree of stereo matching and makes the three-dimensional point coordinates of the obtained feed's surface more accurate. The point cloud is then denoised and Delaunay triangulated, and the volume of the tetrahedron obtained after the triangulation is calculated and summed to obtain the total volume. We used different sizes of wood instead of feed for multiple volume calculations, and the average error between the calculated volume and the real volume was 7.12%. The experimental results show that the volume of the remaining feed of mice can be calculated by binocular stereo vision. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
157263049
Full Text :
https://doi.org/10.1038/s41598-022-13075-7