Back to Search Start Over

Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis.

Authors :
Zhang, Chunlei
Yu, Zipeng
Zhang, Mengyue
Li, Xiaoxuan
Wang, Mingjing
Li, Lixin
Li, Xugang
Ding, Zhaojun
Tian, Huiyu
Source :
Journal of Experimental Botany. 6/2/2022, Vol. 73 Issue 11, p3711-3725. 15p.
Publication Year :
2022

Abstract

Plant growth promoting rhizobacteria (PGPR) refer to bacteria that colonize the rhizosphere and contribute to plant growth or stress tolerance. To further understand the molecular mechanism by which PGPR exhibit symbiosis with plants, we performed a high-throughput single colony screening from the rhizosphere, and uncovered a bacterium (named promoting lateral root, PLR) that significantly promotes Arabidopsis lateral root formation. By 16S rDNA sequencing, PLR was identified as a novel sub-species of Serratia marcescens. RNA-seq analysis of Arabidopsis integrated with phenotypic verification of auxin signalling mutants demonstrated that the promoting effect of PLR on lateral root formation is dependent on auxin signalling. Furthermore, PLR enhanced tryptophan-dependent indole-3-acetic acid (IAA) synthesis by inducing multiple auxin biosynthesis genes in Arabidopsis. Genome-wide sequencing of PLR integrated with the identification of IAA and its precursors in PLR exudates showed that tryptophan treatment significantly enhanced the ability of PLR to produce IAA and its precursors. Interestingly, PLR induced the expression of multiple nutrient (N, P, K, S) transporter genes in Arabidopsis in an auxin-independent manner. This study provides evidence of how PLR enhances plant growth through fine-tuning auxin biosynthesis and signalling in Arabidopsis, implying a potential application of PLR in crop yield improvement through accelerating root development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00220957
Volume :
73
Issue :
11
Database :
Academic Search Index
Journal :
Journal of Experimental Botany
Publication Type :
Academic Journal
Accession number :
157279878
Full Text :
https://doi.org/10.1093/jxb/erac074