Back to Search
Start Over
On Active Disturbance Rejection Control in Presence of Measurement Noise.
- Source :
-
IEEE Transactions on Industrial Electronics . Nov2022, Vol. 69 Issue 11, p11600-11610. 11p. - Publication Year :
- 2022
-
Abstract
- High-gain nature of extended state observer (ESO), which forms an integral part of active disturbance rejection control (ADRC) technique, results in the following limitations: 1) Sensitivity to high-frequency measurement noise which limits closed-loop performance in practical applications. 2) Escalation of observer gains up to a power $\boldsymbol{n+1}$ of observer bandwidth, which complicates numerical implementation when system order $(\boldsymbol{n})$ or observer bandwidth is large. To overcome these limitations, a low-power higher order ESO is proposed in the present work for practical application of ADRC scheme in noisy environment. Moreover, a recently proposed cascade ESO (CESO), designed for noise suppression, is analyzed in the frequency-domain to reveal an underlying similarity with higher-order ESO, which is not reported in literature. Presented analysis justifies the performance improvement obtained over conventional ESO and provides a guideline for selecting the number of cascade levels based on the expected nature of disturbance. Case study performed on a dc–dc boost converter illustrates the practical advantages of proposed scheme over CESO in terms of improved immunity to high-frequency measurement noise, precise regulation in presence of time-varying disturbance, low observer gains that facilitate numerical implementation, and ease of tuning due to a single observer parameter. [ABSTRACT FROM AUTHOR]
- Subjects :
- *NOISE measurement
*DC-to-DC converters
*NOISE control
*BANDWIDTHS
*NOISE
Subjects
Details
- Language :
- English
- ISSN :
- 02780046
- Volume :
- 69
- Issue :
- 11
- Database :
- Academic Search Index
- Journal :
- IEEE Transactions on Industrial Electronics
- Publication Type :
- Academic Journal
- Accession number :
- 157325391
- Full Text :
- https://doi.org/10.1109/TIE.2021.3121754