Back to Search Start Over

Insight into the role of the channel in photothermal materials for solar interfacial water evaporation.

Authors :
Zhang, Wei
Zheng, Tuo
Zhu, Haiguang
Wu, Daxiong
Zhang, Canying
Zhu, Haitao
Source :
Renewable Energy: An International Journal. Jun2022, Vol. 193, p706-714. 9p.
Publication Year :
2022

Abstract

The porous solar-driven interfacial evaporator has attracted substantial interest because of its high performance in converting solar energy into heat for water evaporation. However, the effect mechanism of porous structure (e.g., pore size and porosity) on water evaporation efficiency remains controversial and unclear, which largely restricts the design of high-performance solar evaporators. Herein, a porous solar interfacial evaporator with controllable porous structure was presented by integrating carbonized carboxymethyl cellulose with antimony doped tin oxide (ATO) powder (ATO-C). The experimental results revealed that reducing the porosity of ATO-C could reduce heat loss for heating the water inside channels, thereby improving the evaporation efficiency. Moreover, the synergistic light absorption of carbonized cellulose (in the visible region) and ATO (in the near-infrared light region) enable ATO-C to harvest a large fraction of sunlight (more than 98%) for water evaporation. On the basis, the ATO-C exhibited a water evaporation rate up to 1.44 kg m−2 h−1 under one solar irradiation with an evaporation efficiency of 90.38%, outperforming most previously reported solar evaporators. The current work clarifies the effect mechanism of porosity on evaporation efficiency, which helps to develop high-performance solar interfacial water evaporators. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09601481
Volume :
193
Database :
Academic Search Index
Journal :
Renewable Energy: An International Journal
Publication Type :
Academic Journal
Accession number :
157329562
Full Text :
https://doi.org/10.1016/j.renene.2022.04.139