Back to Search Start Over

Establishing Accelerometer Cut-Points to Classify Walking Speed in People Post Stroke.

Authors :
Moulaee Conradsson, David
Bezuidenhout, Lucian John-Ross
Source :
Sensors (14248220). Jun2022, Vol. 22 Issue 11, p4080-4080. 12p.
Publication Year :
2022

Abstract

While accelerometers could be used to monitor important domains of walking in daily living (e.g., walking speed), the interpretation of accelerometer data often relies on validation studies performed with healthy participants. The aim of this study was to develop cut-points for waist- and ankle-worn accelerometers to differentiate non-ambulation from walking and different walking speeds in people post stroke. Forty-two post-stroke persons wore waist and ankle accelerometers (ActiGraph GT3x+, AG) while performing three non-ambulation activities (i.e., sitting, setting the table and washing dishes) and while walking in self-selected and brisk speeds. Receiver operating characteristic (ROC) curve analysis was used to define AG cut-points for non-ambulation and different walking speeds (0.41–0.8 m/s, 0.81–1.2 m/s and >1.2 m/s) by considering sensor placement, axis, filter setting and epoch length. Optimal data input and sensor placements for measuring walking were a vector magnitude at 15 s epochs for waist- and ankle-worn AG accelerometers, respectively. Across all speed categories, cut-point classification accuracy was good-to-excellent for the ankle-worn AG accelerometer and fair-to-excellent for the waist-worn AG accelerometer, except for between 0.81 and 1.2 m/s. These cut-points can be used for investigating the link between walking and health outcomes in people post stroke. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
22
Issue :
11
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
157368664
Full Text :
https://doi.org/10.3390/s22114080