Back to Search Start Over

Extrapolation Assessment for Forest Structural Parameters in Planted Forests of Southern China by UAV-LiDAR Samples and Multispectral Satellite Imagery.

Authors :
Liu, Hao
Cao, Fuliang
She, Guanghui
Cao, Lin
Source :
Remote Sensing. Jun2022, Vol. 14 Issue 11, p2677-2677. 23p.
Publication Year :
2022

Abstract

Accurate estimation and extrapolation of forest structural parameters in planted forests are essential for monitoring forest resources, investigating their ecosystem services (e.g., forest structure and functions), as well as supporting decisions for precision silviculture. Advances in unmanned aerial vehicle (UAV)-borne Light Detection and Ranging (LiDAR) technology have enhanced our ability to precisely characterize the 3-D structure of the forest canopy with high flexibility, usually within forest plots and stands. For wall-to-wall forest structure mapping in broader landscapes, samples (transects) of UAV-LiDAR datasets are a cost-efficient solution as an intermediate layer for extrapolation from field plots to full-coverage multispectral satellite imageries. In this study, an advanced two-stage extrapolation approach was established to estimate and map large area forest structural parameters (i.e., mean DBH, dominant height, volume, and stem density), in synergy with field plots and UAV-LiDAR and GF-6 satellite imagery, in a typical planted forest of southern China. First, estimation models were built and used to extrapolate field plots to UAV-LiDAR transects; then, the maps of UAV-LiDAR transects were extrapolated to the whole study area using the wall-to-wall grid indices that were calculated from GF-6 satellite imagery. By comparing with direct prediction models that were fitted by field plots and GF-6-derived spectral indices, the results indicated that the two-stage extrapolation models (R2 = 0.64–0.85, rRMSE = 7.49–26.85%) obtained higher accuracy than direct prediction models (R2 = 0.58–0.75, rRMSE = 21.31–38.43%). In addition, the effect of UAV-LiDAR point density and sampling intensity for estimation accuracy was studied by sensitivity analysis as well. The results showed a stable level of accuracy for approximately 10% of point density (34 pts·m−2) and 20% of sampling intensity. To understand the error propagation through the extrapolation procedure, a modified U-statistics uncertainty analysis was proposed to characterize pixel-level estimates of uncertainty and the results demonstrated that the uncertainty was 0.75 cm for mean DBH, 1.23 m for dominant height, 14.77 m3·ha−1 for volume and 102.72 n·ha−1 for stem density, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
11
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
157369061
Full Text :
https://doi.org/10.3390/rs14112677