Back to Search Start Over

Machine learning analysis of features extracted from time–frequency domain of ultrasonic testing results for wood material assessment.

Authors :
Mousavi, Mohsen
Gandomi, Amir H.
Holloway, Damien
Berry, Adam
Chen, Fang
Source :
Construction & Building Materials. Aug2022:Part A, Vol. 342, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

In this paper, a systematic machine learning strategy is proposed to classify wood properties based on a contact ultrasonic testing results. As such, several aspects of the wood material including the type of wood (hardwood or softwood), the direction of an ultrasonic test with respect to the growth rings of the wood, and, whether the wood is damaged or intact are investigated. As a pre-processor, the Variational Mode Decomposition technique is applied to the nonlinearly modulated ultrasonic signals, and the centre frequencies of the decomposition results are taken as features for Machine learning Algorithms (MLAs). Then with each of the MLAs, hyperparameter settings were optimised and technical aspects of the feature engineering are discussed. Best results were achieved using Ensemble classifiers, SVM, and KNN using three features/decomposition. To explore the physics behind the nonlinear problem, the relative false discovery rate obtained from the confusion matrix associated with applying the MLAs is proposed as a metric. We show that different features are capable of exploring different aspects of the problem better. The techniques of this paper can be applied to quality assessment of wood materials. The paper also demonstrates the capability of MLAs in exploring some physics of such problems. Moreover, billets with natural imperfections harvested from the site Collie in WA, Australia are classified to demonstrate the applicability of the proposed approach in real world problems. The result of 94% 5-fold cross-validation accuracy indicates the effectiveness of the proposed approach. • Contact ultrasonic technique is used for the wood quality assessment. • The Variational Mode Decomposition is used to decompose ultrasonic signals. • time–frequency features of the decomposed signals are used as features. • Machine learning algorithms are used to solve classification problems. • Some physics of the problem has been explored from the machine learning results. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09500618
Volume :
342
Database :
Academic Search Index
Journal :
Construction & Building Materials
Publication Type :
Academic Journal
Accession number :
157440217
Full Text :
https://doi.org/10.1016/j.conbuildmat.2022.127761