Back to Search Start Over

A massively parallel assay accurately discriminates between functionally normal and abnormal variants in a hotspot domain of KCNH2.

Authors :
Ng, Chai-Ann
Ullah, Rizwan
Farr, Jessica
Hill, Adam P.
Kozek, Krystian A.
Vanags, Loren R.
Mitchell, Devyn W.
Kroncke, Brett M.
Vandenberg, Jamie I.
Source :
American Journal of Human Genetics. Jul2022, Vol. 109 Issue 7, p1208-1216. 9p.
Publication Year :
2022

Abstract

Many genes, including KCNH2 , contain "hotspot" domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2 , a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this "hotspot" domain is necessary. Our massively parallel trafficking assay can provide this information prospectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029297
Volume :
109
Issue :
7
Database :
Academic Search Index
Journal :
American Journal of Human Genetics
Publication Type :
Academic Journal
Accession number :
157712581
Full Text :
https://doi.org/10.1016/j.ajhg.2022.05.003