Back to Search Start Over

SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo.

Authors :
Malaguti, Mattias
Portero Migueles, Rosa
Annoh, Jennifer
Sadurska, Daina
Blin, Guillaume
Lowell, Sally
Source :
Development (09501991). Jun2022, Vol. 149 Issue 12, p1-16. 16p.
Publication Year :
2022

Abstract

Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered 'sender' and 'receiver' cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09501991
Volume :
149
Issue :
12
Database :
Academic Search Index
Journal :
Development (09501991)
Publication Type :
Academic Journal
Accession number :
157781462
Full Text :
https://doi.org/10.1242/dev.200226