Back to Search Start Over

Mn(III)-Porphyrin Immobilized on the Graphene Oxide-Magnetite Nanocomposite as an Efficient Heterogeneous Catalyst for the Epoxidation of Alkenes.

Authors :
Hajian, Robabeh
Bahrami, Elnaz
Source :
Catalysis Letters. Aug2022, Vol. 152 Issue 8, p2445-2456. 12p.
Publication Year :
2022

Abstract

In this research, β-tetra-brominated meso-tetraphenylporphyrinatomanganese(III) acetate [MnTPPBr4(OAc)] (MnPor) was anchored onto a magnetite imidazole-modified graphene oxide nanosheet (Fe3O4.GO.Im). The obtained catalyst (Fe3O4.GO.Im@MnPor) was characterized through Fourier transform infrared (FT-IR) and diffuse reflectance UV–Visible spectrophotometry (DR UV–Vis), powder X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA) and atomic absorption spectroscopy. The characterization was performed to determine the amount of manganese porphyrin loaded on the GO support. The new immobilized catalyst was employed for the efficient epoxidation of different alkenes with urea hydrogen peroxide (UHP) and acetic acid (HOAc) as oxidant activators under mild conditions. Olefins were oxidized efficiently to their corresponding epoxide with 63–100% selectivity in the presence of Fe3O4.GO.Im@MnPor. Moreover, an remarkable turnover frequency (93) was achieved for the oxidation of α-pinene. The graphene oxide-bound Mn-porphyrin was recovered from the reaction mixture by magnetic decantation and reused several times. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1011372X
Volume :
152
Issue :
8
Database :
Academic Search Index
Journal :
Catalysis Letters
Publication Type :
Academic Journal
Accession number :
158020479
Full Text :
https://doi.org/10.1007/s10562-021-03827-x