Back to Search Start Over

Developing a Microbubble-Based Contrast Agent for Synchrotron Multiple-Image Radiography.

Authors :
Ton, Ngoc
Goncin, Una
Panahifar, Arash
Webb, M. Adam
Chapman, Dean
Wiebe, Sheldon
Machtaler, Steven
Source :
Molecular Imaging & Biology. Aug2022, Vol. 24 Issue 4, p590-599. 10p.
Publication Year :
2022

Abstract

Purpose: Multiple-image radiography (MIR) is an analyzer-based synchrotron X-ray imaging approach capable of dissociating absorption, refraction, and scattering components of X-ray interaction with the material. It generates additional image contrast mechanisms (besides absorption), especially in the case of soft tissues, while minimizing absorbed radiation dose. Our goal is to develop a contrast agent for MIR using ultrasound microbubbles by carrying out a systematic assessment of size, shell material, and concentration. Procedures: Microbubbles were synthesized with two different shell materials: phospholipid and polyvinyl-alcohol. Polydisperse perfluorobutane-filled lipid microbubbles were divided into five size groups using centrifugation. Two distributions of air-filled polymer microbubbles were generated: 2–3 µm and 3–4 µm. A subset of polymer microbubbles 3–4 µm had iron oxide nanoparticles incorporated into their shell or coated on their surface. Microbubbles were immobilized in agar with different concentrations: 5 × 107, 5 × 106, and 5 × 105 MBs/ml. MIR was conducted on the BioMedical Imaging and Therapy beamline at the Canadian Light Source. Three images were generated: Gaussian amplitude, refraction, and ultra-small-angle X-ray scattering (USAXS). The contrast signal was quantified by measuring mean pixel values and comparing them with agar. Results: No difference was detected in absorption or refraction images of all tested microbubbles. Using USAXS, a significant signal increase was observed with lipid microbubbles 6–10 µm at the highest concentration (p = 0.02), but no signal was observed at lower concentrations. Conclusions: These data indicate that lipid microbubbles 6–10 µm are candidates as contrast agents for MIR, specifically for USAXS. A minimum concentration of 5 × 107 microbubbles (lipid-shell 6–10 µm) per milliliter was needed to generate a detectable signal. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15361632
Volume :
24
Issue :
4
Database :
Academic Search Index
Journal :
Molecular Imaging & Biology
Publication Type :
Academic Journal
Accession number :
158061280
Full Text :
https://doi.org/10.1007/s11307-022-01705-5