Back to Search Start Over

Transformer-Based Model for Electrical Load Forecasting.

Authors :
L'Heureux, Alexandra
Grolinger, Katarina
Capretz, Miriam A. M.
Source :
Energies (19961073). Jul2022, Vol. 15 Issue 14, pN.PAG-N.PAG. 23p.
Publication Year :
2022

Abstract

Amongst energy-related CO 2 emissions, electricity is the largest single contributor, and with the proliferation of electric vehicles and other developments, energy use is expected to increase. Load forecasting is essential for combating these issues as it balances demand and production and contributes to energy management. Current state-of-the-art solutions such as recurrent neural networks (RNNs) and sequence-to-sequence algorithms (Seq2Seq) are highly accurate, but most studies examine them on a single data stream. On the other hand, in natural language processing (NLP), transformer architecture has become the dominant technique, outperforming RNN and Seq2Seq algorithms while also allowing parallelization. Consequently, this paper proposes a transformer-based architecture for load forecasting by modifying the NLP transformer workflow, adding N-space transformation, and designing a novel technique for handling contextual features. Moreover, in contrast to most load forecasting studies, we evaluate the proposed solution on different data streams under various forecasting horizons and input window lengths in order to ensure result reproducibility. Results show that the proposed approach successfully handles time series with contextual data and outperforms the state-of-the-art Seq2Seq models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
14
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
158210223
Full Text :
https://doi.org/10.3390/en15144993