Back to Search
Start Over
Low Sidelobe Series-Fed Patch Planar Array with AMC Structure to Suppress Parasitic Radiation.
- Source :
-
Remote Sensing . Aug2022, Vol. 14 Issue 15, p3597-3597. 15p. - Publication Year :
- 2022
-
Abstract
- For automobile radar systems, the antenna array requires a low sidelobe level (SLL) to reduce interference. A low-SLL and low-cost planar antenna array are proposed in this article for millimeter-wave automotive radar applications. The proposed array consists of six linear series-fed patch arrays, a series distribution network using a grounded co-planar waveguide (GCPW), and a bed of nails. First, a hybrid HFSS-MATLAB optimization platform is set up to easily obtain good impedance matching and low SLL of the linear series-fed patch array. Then, a six-way GCPW power divider is designed to combine the optimized linear sub-array to achieve a planar array. However, since CCPW is a semi-open structure, like a microstrip line, the parasitic radiation generated by the GCPW feeding network will lead to the deterioration of the SLL. To solve this problem, a bed of nails—as an artificial magnetic conductor (AMC)—is designed and placed above the feeding networking to create an electromagnetic stopband in the working band. Its working mechanism has been explained in detail. The feeding network cannot effectively radiate electromagnetic waves into free space. Thus, the parasitic radiation can be suppressed. A low-SLL planar array prototype working at 79 GHz is designed, manufactured, and measured. The measured results confirm that the proposed low-SLL planar array has a −10 dB impedance bandwidth of 3 GHz from 77 to 80 GHz and a maximum peak gain of 21 dBi. The measured SLL is −24 dB and −23 dB in the E-plane and H-plane at 79 GHz, respectively. The proposed low SLL array can be used for adaptive cruise control (ACC) system applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 14
- Issue :
- 15
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 158523656
- Full Text :
- https://doi.org/10.3390/rs14153597