Back to Search Start Over

Overlap of movement planning and movement execution reduces reaction time.

Authors :
Orban de Xivry, Jean-Jacques
Legrain, Valéry
Lefèvre, Philippe
Source :
Journal of Neurophysiology. Jan2017, Vol. 117 Issue 1, p117-122. 6p.
Publication Year :
2017

Abstract

Motor planning is the process of preparing the appropriate motor commands in order to achieve a goal. This process has largely been thought to occur before movement onset and traditionally has been associated with reaction time. However, in a virtual line bisection task we observed an overlap between movement planning and execution. In this task performed with a robotic manipulandum, we observed that participants (n = 30) made straight movements when the line was in front of them (near target) but often made curved movements when the same target was moved sideways (far target, which had the same orientation) in such a way that they crossed the line perpendicular to its orientation. Unexpectedly, movements to the far targets had shorter reaction times than movements to the near targets (mean difference: 32 ms, SE: 5 ms, max: 104 ms). In addition, the curvature of the movement modulated reaction time. A larger increase in movement curvature from the near to the far target was associated with a larger reduction in reaction time. These highly curved movements started with a transport phase during which accuracy demands were not taken into account. We conclude that an accuracy demand imposes a reaction time penalty if processed before movement onset. This penalty is reduced if the start of the movement consists of a transport phase and if the movement plan can be refined with respect to accuracy demands later in the movement, hence demonstrating an overlap between movement planning and execution. NEW & NOTEWORTHY In the planning of a movement, the brain has the opportunity to delay the incorporation of accuracy requirements of the motor plan in order to reduce the reaction time by up to 100 ms (average: 32 ms). Such shortening of reaction time is observed here when the first phase of the movement consists of a transport phase. This forces us to reconsider the hypothesis that motor plans are fully defined before movement onset. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223077
Volume :
117
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Neurophysiology
Publication Type :
Academic Journal
Accession number :
158561073
Full Text :
https://doi.org/10.1152/jn.00728.2016