Back to Search Start Over

Extension of the Generic Multi-Frequency Modelling Method for Type 3 Wind Turbines.

Authors :
Nouri, Behnam
Kocewiak, Lukasz
Shah, Shahil
Koralewicz, Przemyslaw
Gevorgian, Vahan
Sorensen, Poul
Source :
IEEE Transactions on Energy Conversion. Sep2022, Vol. 37 Issue 3, p1875-1884. 10p.
Publication Year :
2022

Abstract

Reflecting potential non-linearities of converter-based systems, especially frequency and sequence couplings, is an ongoing challenge for linearized multi-frequency models. Besides, design details are required to develop such models, which either are the intellectual property of manufacturers or require experimental tests. The generic multi-frequency modelling method has been proposed to fill this gap; however, it is only developed for converter-connected systems, e.g., Type 4 Wind Turbines (WT). This paper proposes to extend the application of the generic multi-frequency modelling method for Type 3 WTs. In this way, a theory for patterns of the couplings in Type 3 WTs is proposed. Accordingly, a group of emissions and couplings are Rotor-Speed-Dependent (RSD). The RSD emissions and couplings are particular characteristics of Type 3 WTs, which should be addressed in the generic multi-frequency models. The proposed theory is verified by unique-worldwide experimental perturbation tests on a 2 MVA Type 3 WT using a 7 MVA grid emulator. Accordingly, a limited number of RSD couplings and emissions are observed in the test results, mainly in low frequencies (below 1 kHz). Therefore, addressing the RSD couplings is practical and important to extend the generic multi-frequency modelling for Type 3 WTs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858969
Volume :
37
Issue :
3
Database :
Academic Search Index
Journal :
IEEE Transactions on Energy Conversion
Publication Type :
Academic Journal
Accession number :
158649905
Full Text :
https://doi.org/10.1109/TEC.2022.3166470