Back to Search Start Over

A Car-Following Model considering the Effect of Following Vehicles under the Framework of Physics-Informed Deep Learning.

Authors :
Xu, Le
Ma, Jianxiao
Wang, Yuchen
Source :
Journal of Advanced Transportation. 8/31/2022, p1-12. 12p.
Publication Year :
2022

Abstract

Car-following models have been studied for a long time, and many traffic engineers and researchers have devoted attention to them. With the increase in machine learning, this paper proposes a fusion model based on the physics-informed deep learning framework. The purpose of this paper is to inherit the predecessors' ideas, transform them to fit a new framework, and improve the framework's accuracy. The IDM-D (intelligent driver model development) involves reenabling the effect of the following vehicle to form a complementary model (not car-following model) with the IDM (intelligent driver model). The pretreated NGSIM data are used for calibration and validation. The IDM and the IDM-D are combined with the LSTM under the framework of physics-informed deep learning, and the results are mixed in a ratio to form the final result. Using test data for simulation, the results reveal that the IDM-informed LSTM shows better performance than the LSTM and that the fusion model further improves the MSE (mean square error) of the IDM-informed LSTM. The fusion increases the accuracy during the deceleration process, which is better than just a single IDM-informed LSTM. The fusion model further explains drivers' deceleration behaviors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01976729
Database :
Academic Search Index
Journal :
Journal of Advanced Transportation
Publication Type :
Academic Journal
Accession number :
158815755
Full Text :
https://doi.org/10.1155/2022/3398862