Back to Search Start Over

Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies.

Authors :
Scheepers, Cathrine
Kgagudi, Prudence
Mzindle, Nonkululeko
Gray, Elin S.
Moyo-Gwete, Thandeka
Lambson, Bronwen E.
Oosthuysen, Brent
Mabvakure, Batsirai
Garrett, Nigel J.
Abdool Karim, Salim S.
Morris, Lynn
Moore, Penny L.
Source :
PLoS Pathogens. 9/2/2022, Vol. 18 Issue 9, p1-18. 18p.
Publication Year :
2022

Abstract

Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, and W680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope. Author summary: Germline-targeting immunogens are a promising HIV vaccine design strategy. This approach is reliant on the identification of broadly neutralizing antibody (bNAb) classes, which use the same germline antibody genes to target the same viral epitopes. Here, we compare four HIV Envelope MPER-directed antibodies (4E10, VRC42.01, PGZL1 and CAP206-CH12) that despite having shared antibody genes, show distinct neutralization profiles. We show that CAP206-CH12 is dependent on a highly variable residue in the MPER, which results in low neutralization breadth. In contrast, the 4E10, PGZL1 and VRC42.01 mAbs are dependent on highly conserved residues in the MPER, resulting in exceptional neutralization breadth. Our data suggest that while shared germline genes within bNAb epitope classes are required, in some cases these are not sufficient to produce neutralization breadth, and MPER immunogens will need to trigger responses to conserved sites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537366
Volume :
18
Issue :
9
Database :
Academic Search Index
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
158883708
Full Text :
https://doi.org/10.1371/journal.ppat.1010450