Back to Search Start Over

Active Thermal Control for Buck Converter-Based Active Power Decoupling Circuit.

Authors :
Deshmukh, Nachiketa
Chanekar, Abhishek
Anand, Sandeep
Sahoo, Soumya Ranjan
Source :
IEEE Transactions on Power Electronics. Dec2022, Vol. 37 Issue 12, p14955-14965. 11p.
Publication Year :
2022

Abstract

Aluminum electrolytic capacitors (AECs) and power semiconductor devices (PSDs) are typically identified as weak links in the reliable design of power converters. To eliminate the AECs from the design, active power decoupling (APD) circuits are preferred in single-phase power converters. However, in an attempt to eliminate AECs, this approach introduces the latter weak link in the design, i.e., PSDs in the APD circuit. This article proposes an active thermal control technique to improve the reliability of PSDs in the buck APD circuit. The proposed technique reduces the swing in junction temperature of PSDs using noninvasive power loss modulation. The power loss in PSDs is changed by varying the average voltage across the buffer capacitor. Further, a control technique is suggested to synthesize the reference for average voltage across buffer capacitor. This controller accounts for nonlinearities and minimum/maximum limits of power loss modulation. Further, the additional energy loss due to power loss modulation is restricted to a predefined limit. The proposed technique is validated with the help of circuit simulations and experimental studies with a 500 W laboratory prototype. For the selected mission profile, an increase of 28.5% in the lifetime of PSDs in buck APD circuit is estimated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858993
Volume :
37
Issue :
12
Database :
Academic Search Index
Journal :
IEEE Transactions on Power Electronics
Publication Type :
Academic Journal
Accession number :
158914609
Full Text :
https://doi.org/10.1109/TPEL.2022.3189826