Back to Search Start Over

Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress.

Authors :
Guo, Jian
Wang, Zitao
Qu, Lingling
Hu, Yifan
Lu, Dalei
Source :
BMC Plant Biology. 9/9/2022, Vol. 22 Issue 1, p1-13. 13p.
Publication Year :
2022

Abstract

Background: Salicylic acid (SA) is a phytohormone which works to regulate the abiotic stress response of plants. However, the molecular mechanism by which SA mediates heat tolerance in waxy maize (Zea mays L. sinsensis Kulesh) remains unknown. Results: Two varieties of waxy maize seedlings, heat-tolerant 'Yunuo7' (Y7) and heat-sensitive 'Suyunuo5' (S5), were pretreated with SA prior to heat stress (HTS). After treatment, physiological and transcriptomic changes were analyzed. Compared with HTS, the exogenous application of SA enhanced the shoot dry weight, the activities of antioxidant enzymes (e.g., SOD, POD, CAT and APX), and the concentration of endogenous phytohormones (e.g., SA, ABA, IAA, GA3), while decreased the MDA content. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) identified in the control (CK) vs HTS and HTS vs HTS + SA comparisons were more in S5 than in Y7. HTS induced the downregulation of genes involved in photosynthesis and the upregulation of genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs). Compared with HTS, SA pretreatment reversed the expression of 5 photosynthesis-related genes, 26 phytohormone-related genes, and all genes encoding HSFs and HSPs in S5. Furthermore, the number of alternative splicing (AS) events increased under HTS treatment for both varieties, while decreased under SA pretreatment of S5. Differentially spliced genes (DSGs) showed little overlap with DEGs, and DEGs and DSGs differed significantly in functional enrichment. Conclusions: Physiological and transcriptional together indicated that HTS and SA pretreatment had a greater effect on S5 than Y7. Additionally, it appears that transcriptional regulation and AS work synergistically to enhance thermotolerance in heat-sensitive waxy maize. Our study revealed the regulatory effects and underlying molecular mechanisms of SA on waxy maize seedling under HTS. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712229
Volume :
22
Issue :
1
Database :
Academic Search Index
Journal :
BMC Plant Biology
Publication Type :
Academic Journal
Accession number :
158998294
Full Text :
https://doi.org/10.1186/s12870-022-03822-3