Back to Search Start Over

Compound Capecitabine Colon-Targeted Microparticle Prepared by Coaxial Electrospray for Treatment of Colon Tumors.

Authors :
Chen, Ruiqi
Zhai, Ruidong
Wang, Chao
Liang, Shulong
Wang, Jing
Liu, Zhepeng
Li, Wenlin
Source :
Molecules. Sep2022, Vol. 27 Issue 17, p5690. 10p.
Publication Year :
2022

Abstract

To improve the antitumor effect of combined capecitabine (CAP) and osimertinib (OSI) therapy and quickly and efficiently reduce tumor volumes for preoperative chemotherapy, we designed a compound CAP colon-targeted microparticle (COPMP) prepared by coaxial electrospray. COPMP is a core–shell microparticle composed of a Eudragit S100 outer layer and a CAP/OSI-loaded PLGA core. In this study, we characterized its size distribution, drug loading (DL), encapsulation efficiency (EE), differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), in vitro release, formula ratio, cellular growth inhibition, and in vivo antitumor efficacy. COPMP is of spherical appearance with a size of 1.87 ± 0.23 μm. The DLs of CAP and OSI are 4.93% and 4.95%, respectively. The DSC showed that the phase state of CAP and OSI changed after encapsulation. The FTIR results indicated good compatibility between the drug and excipients. The release curve showed that CAP and OSI were released in a certain ratio. They were barely released prior to 2 h (pH 1.0), less than 50% was released between 3 and 5 h (pH 6.8), and sustained release of up to 80% occurred between 6 and 48 h (pH 7.4). CAP and OSI demonstrated a synergistic effect on HCT-116 cells. In a colon tumor model, the tumor inhibition rate after oral administration of COPMP reached 94% within one week. All the data suggested that COPMP promotes the sustained release of CAP and OSI in the colon, which provides a preoperative chemotherapy scheme for the treatment of colon cancer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
17
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
159032827
Full Text :
https://doi.org/10.3390/molecules27175690