Back to Search Start Over

Is an Unmanned Aerial Vehicle (UAV) Suitable for Extracting the Stand Parameters of Inaccessible Underground Forests of Karst Tiankeng?

Authors :
Shui, Wei
Li, Hui
Zhang, Yongyong
Jiang, Cong
Zhu, Sufeng
Wang, Qianfeng
Liu, Yuanmeng
Zong, Sili
Huang, Yunhui
Ma, Meiqi
Source :
Remote Sensing. Sep2022, Vol. 14 Issue 17, p4128. 23p.
Publication Year :
2022

Abstract

Unmanned aerial vehicle (UAV) remote sensing technology is gradually playing a role alternative to traditional field survey methods in monitoring plant functional traits of forest ecology. Few studies focused on monitoring functional trait ecology of underground forests of inaccessible negative terrain with UAV. The underground forests of tiankeng were discovered and are known as the inaccessible precious ecological refugia of extreme negative terrain. The aim of this research proposal is to explore the suitability of UAV technology for extracting the stand parameters of underground forests' functional traits in karst tiankeng. Based on the multi-scale segmentation algorithm and object-oriented classification method, the canopy parameters (crown width and densities) of underground forests in degraded karst tiankeng were extracted by UAV remote sensing image data and appropriate features collection. First, a multi-scale segmentation algorithm was applied to attain the optimal segmentation scale to obtain the single wood canopy. Second, feature space optimization was used to construct the optimal feature space set for the image and then the k-nearest neighbor(k-NN) classifier was used to classify the image features. The features were classified into five types: canopy, grassland, road, gap, and bare land. Finally, both the crown densities and average crown width of the trees were calculated, and their accuracy were verified. The results showed that overall accuracy of object-oriented image feature classification was 85.60%, with 0.72 of kappa coefficient. The accuracy of tree canopy density extraction was 82.34%, for which kappa coefficient reached 0.91. The average canopy width of trees in the samples from the tiankeng-inside was 5.38 m, while that of the outside samples was 4.83 m. In conclusion, the canopy parameters in karst tiankeng were higher than those outside the tiankeng. Stand parameters extraction of karst tiankeng underground forests based on UAV remote sensing was relatively satisfactory. Thus, UAV technology provides a new approach to explore forest resources in inaccessible negative terrain such as karst tiankengs. In the future, we need to consider UAVs with more bands of cameras to extract more plant functional traits to promote the application of UAV for underground forest ecology research of more inaccessible negative terrain. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
17
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
159034218
Full Text :
https://doi.org/10.3390/rs14174128