Back to Search Start Over

Improving Mountain Snow and Land Cover Mapping Using Very-High-Resolution (VHR) Optical Satellite Images and Random Forest Machine Learning Models.

Authors :
Hu, J. Michelle
Shean, David
Source :
Remote Sensing. Sep2022, Vol. 14 Issue 17, p4227. 27p.
Publication Year :
2022

Abstract

Very-high-resolution (VHR) optical imaging satellites can offer precise, accurate, and direct measurements of snow-covered areas (SCA) with sub-meter to meter-scale resolution in regions of complex land cover and terrain. We explore the potential of Maxar WorldView-2 and WorldView-3 in-track stereo images (WV) for land and snow cover mapping at two sites in the Western U.S. with different snow regimes, topographies, vegetation, and underlying geology. We trained random forest models using combinations of multispectral bands and normalized difference indices (i.e., NDVI) to produce land cover maps for priority feature classes (snow, shaded snow, vegetation, water, and exposed ground). We then created snow-covered area products from these maps and compared them with coarser resolution satellite fractional snow-covered area (fSCA) products from Landsat (~30 m) and MODIS (~500 m). Our models generated accurate classifications, even with limited combinations of available multispectral bands. Models trained on a single image demonstrated limited model transfer, with best results found for in-region transfers. Coarser-resolution Landsat and MODSCAG fSCA products identified many more pixels as completely snow-covered (100% fSCA) than WV fSCA. However, while MODSCAG fSCA products also identified many more completely snow-free pixels (0% fSCA) than WV fSCA, Landsat fSCA products only slightly underestimated the number of completely snow-free pixels. Overall, our results demonstrate that strategic image observations with VHR satellites such as WorldView-2 and WorldView-3 can complement the existing operational snow data products to map the evolution of seasonal snow cover. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
17
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
159034317
Full Text :
https://doi.org/10.3390/rs14174227