Back to Search Start Over

The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice.

Authors :
Lyu, Qiong
Wen, Ya
He, Bin
Zhang, Xiang
Chen, Jinliang
Sun, Yue
Zhao, Yuxing
Xu, Lingjie
Xiao, Qian
Deng, Huisheng
Source :
BBA: Molecular Basis of Disease. Nov2022, Vol. 1868 Issue 11, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

Sarcopenia and obese sarcopenia are increasingly prevalent chronic diseases with multifactorial pathogenesis, and no approved therapeutic drug to date. In the established sarcopenic mice models, muscle weakness, ectopic lipid deposition, and inflammatory responses in both serum and gastrocnemius muscle were observed, which were even deteriorated in obese sarcopenic models. With metformin intervention for 5 months, metformin exhibited benefits and restoring effects on gastrocnemius muscle of sarcopenic mice, but less effective on that of obese sarcopenic mice, as reflected in the increased percentage of muscle mass and enlarged fiber cross-sectional area, enhanced grip strength and exercise capacities, as well as the ameliorated ectopic lipid deposition and partially restored level of TNF-α, IL-1β, IL-6, MCP-1 and IL-1α, which may be via the activation of phospho-AMPKα (Thr172). The significant up-regulated mRNA and protein level of lipolysis related proteins like hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) may contribute to the ameliorated ectopic lipid deposition with metformin intervention. The uptake of free fatty acid may be also inhibited in obese sarcopenic mice with metformin administration, as reflected in down-regulated mRNA and protein level of fatty acid transporter CD36. Furthermore, NF-κB signaling pathway was involved in the anti-inflammatory effect of metformin. These findings suggest that metformin treatment may be conducive to the prevention of age-related sarcopenia by regulating lipid metabolism in skeletal muscle, i.e. enhanced lipolysis and attenuated hyper-inflammatory responses, which may be AMPK-dependent processes. Moreover, high-fat diet would aggravate the damage to ageing in skeletal muscles and reduced their reactivity to metformin. • PPI network indicates strong associations between sarcopenia and obese sarcopenia. • Metformin exhibits protective effect from sarcopenia and obese sarcopenia. • Metformin reduces ectopic lipid deposition and ameliorates systemic inflammation. • AMPK plays a key role in metformin's ameliorating effects on (obese) sarcopenia. • High-fat diet aggravates the damage to sarcopenia and dampens metformin's effects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09254439
Volume :
1868
Issue :
11
Database :
Academic Search Index
Journal :
BBA: Molecular Basis of Disease
Publication Type :
Academic Journal
Accession number :
159079416
Full Text :
https://doi.org/10.1016/j.bbadis.2022.166508