Back to Search Start Over

Dermoscopic image segmentation based on Pyramid Residual Attention Module.

Authors :
Jiang, Yun
Cheng, Tongtong
Dong, Jinkun
Liang, Jing
Zhang, Yuan
Lin, Xin
Yao, Huixia
Source :
PLoS ONE. 9/16/2022, Vol. 17 Issue 9, p1-22. 22p.
Publication Year :
2022

Abstract

We propose a stacked convolutional neural network incorporating a novel and efficient pyramid residual attention (PRA) module for the task of automatic segmentation of dermoscopic images. Precise segmentation is a significant and challenging step for computer-aided diagnosis technology in skin lesion diagnosis and treatment. The proposed PRA has the following characteristics: First, we concentrate on three widely used modules in the PRA. The purpose of the pyramid structure is to extract the feature information of the lesion area at different scales, the residual means is aimed to ensure the efficiency of model training, and the attention mechanism is used to screen effective features maps. Thanks to the PRA, our network can still obtain precise boundary information that distinguishes healthy skin from diseased areas for the blurred lesion areas. Secondly, the proposed PRA can increase the segmentation ability of a single module for lesion regions through efficient stacking. The third, we incorporate the idea of encoder-decoder into the architecture of the overall network. Compared with the traditional networks, we divide the segmentation procedure into three levels and construct the pyramid residual attention network (PRAN). The shallow layer mainly processes spatial information, the middle layer refines both spatial and semantic information, and the deep layer intensively learns semantic information. The basic module of PRAN is PRA, which is enough to ensure the efficiency of the three-layer architecture network. We extensively evaluate our method on ISIC2017 and ISIC2018 datasets. The experimental results demonstrate that PRAN can obtain better segmentation performance comparable to state-of-the-art deep learning models under the same experiment environment conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
17
Issue :
9
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
159163986
Full Text :
https://doi.org/10.1371/journal.pone.0267380