Back to Search Start Over

Investigating the Effect of Lake Ice Properties on Multifrequency Backscatter Using the Snow Microwave Radiative Transfer Model.

Authors :
Murfitt, Justin
Duguay, Claude R.
Picard, Ghislain
Gunn, Grant E.
Source :
IEEE Transactions on Geoscience & Remote Sensing. Aug2022, Vol. 60, p1-23. 23p.
Publication Year :
2022

Abstract

Recent investigations using polarimetric decomposition and numerical models have helped to improve the understanding of how radar signals interact with lake ice. However, further research is needed on how radar signals are impacted by varying lake ice properties. Radiative transfer (RT) models provide one method of improving this understanding. These are the first published experiments using the snow microwave RT (SMRT) model to investigate the response of different frequencies (L-, C-, and X-band) at horizontal-horizontal (HH) and vertical-vertical (VV) polarizations using various incidence angles (20°, 30°, and 40°) to changes in ice thickness, porosity, bubble radius, and ice–water interface roughness. This is also the first use of SMRT in combination with a thermodynamic lake ice model. Experiments were for a lake with tubular bubbles and one without tubular bubbles under difference scenarios. An analysis of the backscatter response to different properties indicates that increasing ice thickness and layer porosity have little impact on backscatter from lake ice. X-band backscatter shows increased response to surface ice layer bubble radius; however, this was limited to other frequencies except at shallower incidence angles (40°). All three frequencies display the largest response to increasing root mean square (rms) height at the ice–water interface, which supports surface scattering at the ice–water interface as being the dominant scattering mechanism. These results demonstrate that the SMRT is a valuable tool for understanding the response of backscatter to changes in freshwater lake ice properties and could be used in the development of inversion models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
60
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
159194959
Full Text :
https://doi.org/10.1109/TGRS.2022.3197109