Back to Search Start Over

Parametric Model-Based 2-D Autofocus Approach for General BiSAR Filtered Backprojection Imagery.

Authors :
Shi, Tianyue
Mao, Xinhua
Jakobsson, Andreas
Liu, Yanqi
Source :
IEEE Transactions on Geoscience & Remote Sensing. Aug2022, Vol. 60, p1-14. 14p.
Publication Year :
2022

Abstract

The filtered backprojection (FBP) algorithm is viewed as a preferred candidate for general bistatic synthetic aperture radar (BiSAR) imaging since it does not pose any restrictions on SAR configurations or flight paths. However, high-efficient autofocus methods such as phase gradient autofocus (PGA) or Mapdrift (MD) cannot be effectively integrated with the FBP algorithm due to the unknown properties of the BiSAR FBP imagery spectrum. In this article, a novel Fourier-based interpretation of the BiSAR FBP algorithm is presented. Based on the new viewpoint, spectral characteristics of the BiSAR FBP imagery in the wavenumber domain, including range spectral ambiguity, space-variant spectral support, and the structural 2-D phase error, are derived in detail. Using these characteristics, a computationally efficient 2-D autofocus approach is proposed. First, a preprocessing is performed to eliminate the range spectral ambiguity and to align the skewed spectrum support, which facilitates the following phase error estimation and correction. Then, an estimation of the 1-D azimuth phase error (APE) is applied by combining multiple estimation results from different subband data. Finally, the 2-D phase error is computed directly from the estimated APE by exploiting the derived analytical structure of the 2-D phase error, which is then applied to restore the BiSAR FBP image. The simulation results are presented to show the effectiveness of the proposed approach. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
60
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
159194994
Full Text :
https://doi.org/10.1109/TGRS.2022.3198648