Back to Search Start Over

Automated Design Error Debugging of Digital VLSI Circuits.

Authors :
Moness, Mohammed
Gaber, Lamya
Hussein, Aziza I.
Ali, Hanafy M.
Source :
Journal of Electronic Testing. Aug2022, Vol. 38 Issue 4, p395-417. 23p.
Publication Year :
2022

Abstract

As the complexity and scope of VLSI designs continue to grow, fault detection processes in the pre-silicon stage have become crucial to guaranteeing reliability in IC design. Most fault detection algorithms can be solved by transforming them into a satisfiability (SAT) problem decipherable by SAT solvers. However, SAT solvers consume significant computational time, as a result of the search space explosion problem. This ever- increasing amount of data can be handled via machine learning techniques known as deep learning algorithms. In this paper, we propose a new approach utilizing deep learning for fault detection (FD) of combinational and sequential circuits in a type of stuck-at-faults. The goal of the proposed semi-supervised FD model is to avoid the search space explosion problem by taking advantage of unsupervised and supervised learning processes. First, the unsupervised learning process attempts to extract underlying concepts of data using Deep sparse autoencoder. Then, the supervised process tends to describe rules of classification that are applied to the reduced features for detecting different stuck-at faults within circuits. The FD model proposes good performance in terms of running time about 187 × compared to other FD algorithm based on SAT solvers. In addition, it is compared to common classical machine learning models such as Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB) classifiers, in terms of validation accuracy. The results show a maximum validation accuracy of the feature extraction process at 99.93%, using Deep sparse autoencoder for combinational circuits. For sequential circuits, stacked sparse autoencoder presents 99.95% as average validation accuracy. The fault detection process delivers around 99.6% maximum validation accuracy for combinational circuits from ISCAS'85 and 99.8% for sequential circuits from ISCAS'89 benchmarks. Moreover, the proposed FD model has achieved a running time of about 1.7x, compared to DT classifier and around 1.6x, compared to RF classifier and GB machine learning classifiers, in terms of validation accuracy in detecting faults occurred in eight different digital circuits. Furthermore, the proposed model outperforms other FD models, based on Radial Basis Function Network (RBFN), achieving 97.8% maximum validation accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09238174
Volume :
38
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Electronic Testing
Publication Type :
Academic Journal
Accession number :
159304146
Full Text :
https://doi.org/10.1007/s10836-022-06020-z