Back to Search Start Over

Evaluating the Applicability of PERSIANN-CDR Products in Drought Monitoring: A Case Study of Long-Term Droughts over Huaihe River Basin, China.

Authors :
Yang, Na
Yu, Hang
Lu, Ying
Zhang, Yehui
Zheng, Yunchuan
Source :
Remote Sensing. Sep2022, Vol. 14 Issue 18, pN.PAG-N.PAG. 22p.
Publication Year :
2022

Abstract

In this study, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) was evaluated for the assessment of long-term drought monitoring in Huaihe River Basin using daily gauge observation data for the period from 1983 to 2017. The evaluation results show that the PERSIANN-CDR algorithm has a good detection ability for small precipitation events over the whole basin, but a poor ability for extreme precipitation events (>50 mm/day). Daily PERSIANN-CDR estimates perform relatively better in areas with abundant precipitation, while the monthly and yearly PERSIANN-CDR estimates are highly consistent with gauge observations both in magnitude and space. The Standardized Precipitation Index (SPI) at various time scales (3, 6, and 12 months) was calculated based on PERSIANN-CDR and gauge observation, respectively. Grid-based values of statistics derived from those SPI values demonstrate that PERSIANN-CDR has a good ability to capture drought events of each time scale across the basin. However, caution should be applied when using PERSIANN-CDR estimates for basin-scale drought trend analysis. Furthermore, three drought events with long duration and large extent were selected to test the applicability of PERSIANN-CDR in drought monitoring. The results show that it has a good ability to capture when and where droughts occur and how far they spread. Due to the overestimation of small precipitation events, PERSIANN-CDR tends to overestimate the number of extreme droughts and their extents. This needs to be considered in future algorithm improvement. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
18
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
159332784
Full Text :
https://doi.org/10.3390/rs14184460