Back to Search Start Over

Multiple Initial Point Approach to Solving Power Flows for Monte Carlo Studies.

Authors :
Schipper, Josh
McNab, Sharee
Kueh, Yuyin
Mukhedkar, Radnya
Source :
Energies (19961073). Oct2022, Vol. 15 Issue 19, p7141. 27p.
Publication Year :
2022

Abstract

Power flow solvers typically start from an initial point of power injection. This paper constructs a system of multiple initial points (SMIP) to enable selection of an appropriate initial point, with the objective to achieve a balanced improvement in the solution speed and accuracy, for problems with a large number of power flows. The intent is to recover time cost of forming the SMIP through the improvements to each power flow. The SMIP is tested on a time series based Monte Carlo study of Electric Vehicle (EV) hosting capacity in a low voltage distribution network, which has 5.4 million power flows. SMIP is applied to two power flow solvers: a Taylor series approximation and a Z-bus method. The accuracy of the quadratic Taylor series approximation was improved by a factor of 30 with a 27% increase in the solve time when compared against a single no-load initial point. A Z-bus solver with SMIP, limited to two iterations, gave the best performance for the EV hosting capacity case study. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
19
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
159669114
Full Text :
https://doi.org/10.3390/en15197141