Back to Search
Start Over
Multicolor bipartite Ramsey numbers for quadrilaterals and stars.
- Source :
-
Applied Mathematics & Computation . Feb2023, Vol. 438, pN.PAG-N.PAG. 1p. - Publication Year :
- 2023
-
Abstract
- For bipartite graphs H 1 , ... , H μ , μ ≥ 2 , the μ -color bipartite Ramsey number, denoted by R b (H 1 , ... , H μ) , is the least positive integer N such that if we arbitrarily color the edges of a complete bipartite graph K N , N with μ colors, then it contains a monochromatic copy of H i in color i for some i , 1 ≤ i ≤ μ. Let C 4 and K 1 , n be a quadrilateral and a star on n + 1 vertices, respectively. In this paper, we show that the (μ + 1) -color bipartite Ramsey number R b (C 4 , ... , C 4 , K 1 , n) ≤ n + ⌈ 1 2 μ 2 (4 n + μ 2 + 2 μ − 7) + 4 ⌉ + μ 2 + μ 2 − 1. Moreover, using algebraic methods, we construct Ramsey graphs or near Ramsey graphs and determine infinitely many values of R b (C 4 , ... , C 4 , K 1 , n) , which reach the upper bound if μ = 1 , 2 and are at most ⌊ μ 2 ⌋ less than the upper bound if μ ≥ 3. [ABSTRACT FROM AUTHOR]
- Subjects :
- *RAMSEY numbers
*QUADRILATERALS
*BIPARTITE graphs
*COMPLETE graphs
*FINITE fields
Subjects
Details
- Language :
- English
- ISSN :
- 00963003
- Volume :
- 438
- Database :
- Academic Search Index
- Journal :
- Applied Mathematics & Computation
- Publication Type :
- Academic Journal
- Accession number :
- 159822283
- Full Text :
- https://doi.org/10.1016/j.amc.2022.127576