Back to Search Start Over

Multicolor bipartite Ramsey numbers for quadrilaterals and stars.

Authors :
Zhang, Xuemei
Weng, Chunyan
Chen, Yaojun
Source :
Applied Mathematics & Computation. Feb2023, Vol. 438, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

For bipartite graphs H 1 , ... , H μ , μ ≥ 2 , the μ -color bipartite Ramsey number, denoted by R b (H 1 , ... , H μ) , is the least positive integer N such that if we arbitrarily color the edges of a complete bipartite graph K N , N with μ colors, then it contains a monochromatic copy of H i in color i for some i , 1 ≤ i ≤ μ. Let C 4 and K 1 , n be a quadrilateral and a star on n + 1 vertices, respectively. In this paper, we show that the (μ + 1) -color bipartite Ramsey number R b (C 4 , ... , C 4 , K 1 , n) ≤ n + ⌈ 1 2 μ 2 (4 n + μ 2 + 2 μ − 7) + 4 ⌉ + μ 2 + μ 2 − 1. Moreover, using algebraic methods, we construct Ramsey graphs or near Ramsey graphs and determine infinitely many values of R b (C 4 , ... , C 4 , K 1 , n) , which reach the upper bound if μ = 1 , 2 and are at most ⌊ μ 2 ⌋ less than the upper bound if μ ≥ 3. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00963003
Volume :
438
Database :
Academic Search Index
Journal :
Applied Mathematics & Computation
Publication Type :
Academic Journal
Accession number :
159822283
Full Text :
https://doi.org/10.1016/j.amc.2022.127576