Back to Search Start Over

Diamondoids and thiadiamondoids generated from hydrothermal pyrolysis of crude oil and TSR experiments.

Authors :
Peng, Yanyan
Cai, Chunfang
Fang, Chenchen
Wu, Liangliang
Liu, Jinzhong
Sun, Peng
Liu, Dawei
Source :
Scientific Reports. 10/22/2022, Vol. 12 Issue 1, p1-18. 18p.
Publication Year :
2022

Abstract

Diamondoid compounds are widely used to reflect thermal maturation of high mature source rocks or oils and oil cracking extents. However, diamondoids and thiadiamondoids were demonstrated to have newly been generated and decomposed in our hydrothermal pyrolysis of crude oil and TSR experiments. Our results show that adamantanes and diamantanes are generated primarily within the maturity range 0.48–2.1% and 1.2–3.0% EasyRo, respectively. Their formation is enhanced and the decomposition of diamantanes obviously lags at elevated temperatures compared with anhydrous experiments. MDI, EAI, DMAI-1, DMDI-2 may serve as reliable maturity proxies at > ca.1.0% EasyRo, and other isomerization indices (TMAI-1, TMAI-2 and DMAI-2) are effective for the highly mature organic matter at EasyRo > 2.0%. The extent of oil cracking (EOC) calculated from the broadly used (3- + 4-) MD method (Dahl et al. in Nature 399:54–56, 1999) is proven to overestimate, especially for highly cracked samples due to the new generation of (3- + 4-) MD. Still, it can be corrected using a new formula at < 3.0% EasyRo. Other diamondoid-related indices (e.g., EAI, DMDI-2, As/Ds, MAs/MDs, DMAs/DMDs, and DMAs/MDs) can also be used to estimate EOC. However, these indices cannot be applied to TSR-altered petroleum. TSR is experimentally confirmed to generate diamantanes and thiaadmantanes at 1.81% EasyRo likely via direct reactions of reduced S species with hydrocarbons and accelerate the decomposition of diamantanes at > 2.62% EasyRo compared with thermal chemical alteration (TCA). More studies are needed to assess specific mechanisms for the formation of thiadiamondoids under natural conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
159897461
Full Text :
https://doi.org/10.1038/s41598-021-04270-z