Back to Search Start Over

Inverse Identification of a Constitutive Model for High-Speed Forming Simulation: An Application to Electromagnetic Metal Forming.

Authors :
Kang, Dayoung
Noh, Hak-Gon
Kim, Jeong
Lee, Kyunghoon
Source :
Materials (1996-1944). Oct2022, Vol. 15 Issue 20, p7179-N.PAG. 30p.
Publication Year :
2022

Abstract

Forming simulation requires a constitutive model whose parameters are typically determined with tensile tests assumed static. However, this conventional approach is impractical for high-speed forming simulation characterized by high strain rates inducing transient effects. To identify constitutive parameters in relation to high-speed forming simulation, we formulated the problem of constitutive modeling as inverse parameter estimation addressed by regularized nonlinear least squares. Regarding the proposed inverse constitutive modeling, we adopted the L-curve method for proper regularization and model order reduction for rapid simulation. For demonstration, we corroborated the proposed strategy by identifying the modified Johnson–Cook model in the context of a free bulge test with electromagnetic metal forming simulation. The L-curve method allowed us to systematically choose a regularization parameter, and model order reduction brought enormous computational savings. After identifying constitutive parameters, we successfully verified and validated the reduced and original simulation models, respectively, with a manufactured workpiece. In addition, we validated the numerically identified constitutive model with a dynamic material test using a split Hopkinson pressure bar. Overall, we showed that inverse constitutive modeling for high-speed forming simulation can be effectively tackled by regularized nonlinear least squares with the help of an L-curve and a reduced-order model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
15
Issue :
20
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
159912948
Full Text :
https://doi.org/10.3390/ma15207179