Back to Search Start Over

Occurrence characteristics and influential factors of movable oil in nano-pores by molecular dynamics simulation.

Authors :
Luo, Yongcheng
Xiao, Hanmin
Liu, Xiangui
Zheng, Taiyi
Source :
Colloids & Surfaces A: Physicochemical & Engineering Aspects. Dec2022, Vol. 655, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

CO 2 -enhanced oil recovery (CO 2 -EOR) technology has shown great application potential in the development of tight reservoirs. Since the proportion of nano-pores in tight oil reservoirs exceeds 77%, it is necessary to further study the occurrence state of crude oil in nano-pores. In this paper, the molecular dynamics simulation was applied to study the adsorption and diffusion behaviors of multi-component crude oil in quartz (hydrophilic) nano-pores. Besides, the density discretization method was used to investigate the occurrence characteristics of crude oil, the proportion of movable fluid in nano-pores, and the effects of CO 2 and polar molecules (C 3 H 6 O) on the adsorption characteristics of crude oil. The simulation results showed that the adsorption state of crude oil in the quartz nano-pores was in the form of 4 adsorption layers with a thickness of 0.45 nm each. In nano-pores, the oil molecules with longer molecular chains were more likely to aggregate and adsorb on the quartz surface. Among them, polar oil molecules have the strongest adsorption capacity on the quartz surface. Moreover, the crude oil potential energy and the self-diffusion coefficient gradually increased from the vicinity of the quartz wall and tended to be stable in the free layer. Meanwhile, the content of movable crude oil gradually augmented with the increasement of nanometer pore width and temperature. Furthermore, the pressure had little effect on the density distribution of crude oil in the pores. In contrast, the temperature had a more significant effect on the density distribution of the adsorption layer. At last, due to the more substantial adsorption capacity of CO 2 on the rock surface, the crude oil adsorbed initially on the rock surface would be stripped off by CO 2 , converting from irreducible oil to moveable oil. [Display omitted] • Distribution profile of adsorbed and free crude oil in various nanoslits. • The self-diffusion coefficient and potential energy of crude oil at different positions. • Temperature has a great influence on the occurrence state of crude oil. • Effects of different proportions of CO 2 on the occurrence state of crude oil in nanoslits. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09277757
Volume :
655
Database :
Academic Search Index
Journal :
Colloids & Surfaces A: Physicochemical & Engineering Aspects
Publication Type :
Academic Journal
Accession number :
159981408
Full Text :
https://doi.org/10.1016/j.colsurfa.2022.130320