Back to Search Start Over

Effect of Light and Heavy Rare Earth Doping on the Physical Structure of Bi 2 O 2 CO 3 and Their Performance in Photocatalytic Degradation of Dimethyl Phthalate.

Authors :
He, Qingyun
Liu, Xingqiang
Li, Feng
Li, Fang
Tao, Leiming
Yu, Changlin
Source :
Catalysts (2073-4344). Nov2022, Vol. 12 Issue 11, p1295. 15p.
Publication Year :
2022

Abstract

In order to solve the problem of environmental health hazards caused by phthalate esters, a series of pure Bi2O2CO3 and light (La, Ce, Pr, Nd, Sm and Eu) and heavy (Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) rare earth-doped Bi2O2CO3 samples were prepared by hydrothermal method. The crystalline phase composition and physical structure of the samples calcined at 300 °C were studied, and we found that the rare earth ion doping promoted the transformation of Bi2O2CO3 to β-Bi2O3 crystalline phase, thus obtaining a mixed crystal phase photocatalyst constituted by rare earth-ion-doped Bi2O2CO3/β-Bi2O3. The Bi2O3/Bi2O2CO3 heterostructure had a lower band gap and more efficient charge transfer. The fabricated samples were applied to the photocatalytic degradation of dimethyl phthalate (DMP) under a 300 W tungsten lamp, and it was found that the rare earth ion doping enhanced the photocatalytic degradation activity of DMP, in which the heavy rare earth of Er-doped sample reached 78% degradation for DMP at 150 min of light illumination. In addition, the doping of rare earths resulted in a larger specific surface area and a stronger absorption of visible light. At the same time, the formation of Bi2O2CO3/β-Bi2O3 heterogeneous junction enhanced the separation efficiency of photogenerated electrons and holes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734344
Volume :
12
Issue :
11
Database :
Academic Search Index
Journal :
Catalysts (2073-4344)
Publication Type :
Academic Journal
Accession number :
160143632
Full Text :
https://doi.org/10.3390/catal12111295