Back to Search Start Over

Historical Changes of Black Carbon in Snow and Its Radiative Forcing in CMIP6 Models.

Authors :
Chen, Yang
Li, Xuejing
Xing, Yuxuan
Yan, Shirui
Wu, Dongyou
Shi, Tenglong
Cui, Jiecan
Zhang, Xueying
Niu, Xiaoying
Source :
Atmosphere. Nov2022, Vol. 13 Issue 11, p1774. 13p.
Publication Year :
2022

Abstract

Black carbon in snow (BCS) has a significant impact on global climate and is an important component of Earth system modeling. Here, we provide a comprehensive evaluation of BCS simulations in the Coupled Model Intercomparison Project Phase 6 (CMIP6) and its radiative forcing on a global scale. Overall, the multi-model mean generally captures the characteristics of BCS spatial patterns, with maximum concentrations in East Asia and the Tibetan Plateau (~120 ng·g−1), and the lowest in Antarctica (~0.05 ng·g−1). The BCS concentrations in all CMIP6 multi-model mean and individual models generally exhibit a temporally increasing trend globally, with particularly large increases after the 1940s. In terms of seasonal cycles, individual models are generally consistent in most regions. Globally, BCS concentrations are highest around January and lowest in September. The albedo reduction in the Tibetan Plateau and East Asia simulated by the CMIP6 multi-model mean reached ~0.06 in 2014 and may influence climate more than expected. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734433
Volume :
13
Issue :
11
Database :
Academic Search Index
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
160147136
Full Text :
https://doi.org/10.3390/atmos13111774