Back to Search Start Over

Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data.

Authors :
Radchenko, Andrii
Radchenko, Mykola
Koshlak, Hanna
Radchenko, Roman
Forduy, Serhiy
Source :
Energies (19961073). Nov2022, Vol. 15 Issue 22, p8774. 18p.
Publication Year :
2022

Abstract

Integrated energy systems (IES) for combined power, heat and refrigeration supply achieved a wide application due to high flexibility in matching current loading. So as electricity is easily convertible into any other form of energy, gas engines are widely applied as driving engines characterized by high electrical and overall efficiency of about 45% and 90%, respectively. However, the highest thermal efficiency is achieved at full matching heat generated by the engine and heat transformed. This is often impossible in actual practice, especially if the heat is transformed into refrigeration by the most efficient and widespread absorption lithium-bromide chillers (ACh) and the heat not consumed by the ACh is removed from the atmosphere through an emergency radiator. The unused heat might be transformed by an ejector chiller (ECh) as the simplest and cheapest. So as the thermodynamic efficiency of any combustion engine is influenced essentially by the sucked air temperature, the excessive refrigeration produced by the ECh, is used for IES cooling to generate additional electricity and increase the electrical and overall efficiency of the engine. Such a redistribution of heat enables the enhancement of the efficiency of IES with an absorption-ejector chiller (AECh). The modified criteria for the comparative estimation of thermodynamic efficiency of innovative IESs with AEChs without overgenerated heat lost against a typical IES with an ACh and heat lost are proposed. In contrast to well-known electrical and heat efficiency, it considers the magnitude of heat loss and enables us to compare the heat efficiency of any version of transforming heat to refrigeration with an ideal basic version of IES based on a highly efficient ACh, transforming all the heat removed from the engine without heat loss. Some alternative scheme decisions for heat recovery systems have been developed based on monitoring data. They might be easily implemented into a typical IES with ACh. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
22
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
160432089
Full Text :
https://doi.org/10.3390/en15228774