Back to Search Start Over

Bifurcation and chaos in a delayed eco-epidemic model induced by prey configuration.

Authors :
Gupta, Ashvini
Dubey, Balram
Source :
Chaos, Solitons & Fractals. Dec2022:Part 1, Vol. 165, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

The present study assumes that infectious disease among prey classifies them as susceptible (S) and infected (I) prey. When strong (susceptible) prey forms a herd to defend against the predator, it can reverse their role. This paper focuses on spotlighting the impact of disease, generalized herd shape, predator mortality due to prey group, the attack rate for healthy prey, and time delay. These factors crucially govern the system's dynamics like Hopf-bifurcation, transcritical bifurcation, and chaos. The sketch of the maximum Lyapunov exponent confirms the chaotic nature. Extensive theoretical and numerical analysis reveals the existence and stability of steady-states in the presence or absence of delay. This study finds out that disease spread in prey can enhance the chances of predator survival. Furthermore, sensitivity analysis demonstrates the influence of some epidemic and ecological parameters on the reproduction numbers of the proposed eco-epidemic system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09600779
Volume :
165
Database :
Academic Search Index
Journal :
Chaos, Solitons & Fractals
Publication Type :
Periodical
Accession number :
160439659
Full Text :
https://doi.org/10.1016/j.chaos.2022.112785