Back to Search Start Over

Performance Comparison of Multiple Convolutional Neural Networks for Concrete Defects Classification.

Authors :
Arafin, Palisa
Issa, Anas
Billah, A. H. M. Muntasir
Source :
Sensors (14248220). Nov2022, Vol. 22 Issue 22, p8714. 18p.
Publication Year :
2022

Abstract

Periodical vision-based inspection is a principal form of structural health monitoring (SHM) technique. Over the last decades, vision-based artificial intelligence (AI) has successfully facilitated an effortless inspection system owing to its exceptional ability of accuracy of defects' pattern recognition. However, most deep learning (DL)-based methods detect one specific type of defect, whereas DL has a high proficiency in multiple object detection. This study developed a dataset of two types of defects, i.e., concrete crack and spalling, and applied various pre-built convolutional neural network (CNN) models, i.e., VGG-19, ResNet-50, InceptionV3, Xception, and MobileNetV2 to classify these concrete defects. The dataset developed for this study has one of the largest collections of original images of concrete crack and spalling and avoided the augmentation process to replicate a more real-world condition, which makes the dataset one of a kind. Moreover, a detailed sensitivity analysis of hyper-parameters (i.e., optimizers, learning rate) was conducted to compare the classification models' performance and identify the optimal image classification condition for the best-performed CNN model. After analyzing all the models, InceptionV3 outperformed all the other models with an accuracy of 91%, precision of 83%, and recall of 100%. The InceptionV3 model performed best with optimizer stochastic gradient descent (SGD) and a learning rate of 0.001. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
22
Issue :
22
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
160465887
Full Text :
https://doi.org/10.3390/s22228714