Back to Search Start Over

Numerical modeling and analysis of the matrix acidizing process in fractured sandstone rocks with the Extended–FEM.

Authors :
Xie, Yaozeng
Luo, Zhifeng
Cheng, Long
Zhao, Liqiang
Chen, Xiang
Zhang, NanLin
Ren, Dengfeng
Cao, Yinxiang
Source :
Journal of Petroleum Science & Engineering. Jan2023:Part A, Vol. 220, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

Significant natural fractures develop in deep sandstone reservoirs. However, the previous numerical simulation for matrix acidizing in sandstone rocks always focused on the reactive flow in porous media. A series of responses between multiple types of acids and minerals in fracture and matrix pores have been a significant setback for seeking the mechanism of acid flow in fractured sandstone rocks. This paper, established a multistage reactive-transport model for fractured sandstone rocks based on the two-scale continuum model to explore the effects of fractures on the reactive flow. The weak forms of fluid flow and solute transport equations are derived using the Galerkin method to couple the matrix and fracture domains, and the extended finite element method was used to solve the discretization model. Additionally, we presented numerical simulations under 2D linear flow conditions with specific and sensitive analyses about fracture and matrix properties. Numerical cases showed that the wormhole-shaped structure generated by acid dissolution is hard to develop even in highly heterogeneous fractured sandstone rocks due to the low reaction rate between mud acid and minerals. However, fractures that are not parallel to the flow direction can accelerated acid flow in the formation and reduced Si(OH) 4 precipitation. Increasing the injection rate can not change the dissolution patterns of sandstone, but expanded the acid diffusion range and decreased Si(OH) 4 precipitation in fractured sandstone. • A multistage reactive-transport model of fractured sandstone was developed based on the two-scale continuum model. • The mechanism of acid flow in fractured sandstone rocks was explored. • The effects of the characteristic parameters of fracture and matrix on the acid transport were investigated. • The potential for generating wormhole-like structures in fractured sandstone rocks was analyzed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09204105
Volume :
220
Database :
Academic Search Index
Journal :
Journal of Petroleum Science & Engineering
Publication Type :
Academic Journal
Accession number :
160538904
Full Text :
https://doi.org/10.1016/j.petrol.2022.111215