Back to Search Start Over

Preparation for Denitrification and Phenotypic Diversification at the Cusp of Anoxia: a Purpose for N2O Reductase Vis-à-Vis Multiple Roles of O2.

Authors :
Kellermann, R.
Hauge, K.
Tjåland, R.
Thalmann, S.
Bakken, L. R.
Bergaust, L.
Source :
Applied & Environmental Microbiology. Nov2022, Vol. 88 Issue 21, p1-14. 14p.
Publication Year :
2022

Abstract

Adaptation to anoxia by synthesizing a denitrification proteome costs metabolic energy, and the anaerobic respiration conserves less energy per electron than aerobic respiration. This implies a selective advantage of the stringent O2 repression of denitrification gene transcription, which is found in most denitrifying bacteria. In some bacteria, the metabolic burden of adaptation can be minimized further by phenotypic diversification, colloquially termed "bet-hedging," where all cells synthesize the N2O reductase (NosZ) but only a minority synthesize nitrite reductase (NirS), as demonstrated for the model strain Paracoccus denitrificans. We hypothesized that the cells lacking NirS would be entrapped in anoxia but with the possibility of escape if supplied with O2 or N2O. To test this, cells were exposed to gradual O2 depletion or sudden anoxia and subsequent spikes of O2 and N2O. The synthesis of NirS in single cells was monitored by using an mCherry-nirS fusion replacing the native nirS, and their growth was detected as dilution of green, fluorescent fluorescein isothiocyanate (FITC) stain. We demonstrate anoxic entrapment due to e2-acceptor deprivation and show that O2 spiking leads to bet-hedging, while N2O spiking promotes NirS synthesis and growth in all cells carrying NosZ. The cells rescued by the N2O spike had much lower respiration rates than those rescued by the O2 spike, however, which could indicate that the well-known autocatalytic synthesis of NirS via NO production requires O2. Our results bring into relief a fitness advantage of pairing restrictive nirS expression with universal NosZ synthesis in energy-limited systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00992240
Volume :
88
Issue :
21
Database :
Academic Search Index
Journal :
Applied & Environmental Microbiology
Publication Type :
Academic Journal
Accession number :
160550969
Full Text :
https://doi.org/10.1128/aem.01053-22