Back to Search Start Over

The effects of pre-stress assumptions on dynamic rupture with complex fault geometry in the San Gorgonio Pass, California, region.

Authors :
Tarnowski, Jennifer M.
Kyriakopoulos, Christodoulos
Oglesby, David D.
Cooke, Michele L.
Stern, Aviel
Source :
Geosphere. Dec2022, Vol. 18 Issue 6, p1710-1725. 16p.
Publication Year :
2022

Abstract

We use three-dimensional (3-D) dynamic finite-element models to investigate potential rupture paths of earthquakes propagating along faults through the western San Gorgonio Pass, a structurally complex region along the San Andreas fault system in southern California (USA). We focus on the right-lateral San Bernardino strand of the San Andreas fault system, the oblique thrust–right-lateral San Gorgonio Pass fault zone, and a portion of the right-lateral Garnet Hill strand of the San Andreas fault system. We use the 3-D finite-element method to model rupture propagation along a fault geometry that reflects current understanding of the local geometrical complexity and is consistent with long-term loading and observed surface deformation. We test three different types of pre-stress assumptions: (1) constant tractions (assuming pure right-lateral strike-slip motion on the San Bernardino and Garnet Hill strands and oblique thrust–right-lateral strike-slip motion on the San Gorgonio Pass fault zone), (2) a uniform regional stress regime, and (3) long-term (evolved) stress from quasi-static crustal deformation modeling. Our results imply that under the more realistic regional stress and evolved stress assumptions, throughgoing rupture propagation from the southeast to northwest (i.e., from the Garnet Hill to the San Bernardino strand) may be more likely than throughgoing rupture in the reverse direction (from the San Bernardino to the Garnet Hill strand). The results may have implications for the earthquake potential in the region as well as for ground motion in the Los Angeles Basin. The results also emphasize how fault geometry and stress patterns combine to influence rupture propagation on complex fault systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1553040X
Volume :
18
Issue :
6
Database :
Academic Search Index
Journal :
Geosphere
Publication Type :
Academic Journal
Accession number :
160592574
Full Text :
https://doi.org/10.1130/GES02511.1