Back to Search Start Over

Transformer Network-Based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM).

Authors :
Park, Hyunwook
Kim, Minsu
Kim, Seongguk
Kim, Keunwoo
Kim, Haeyeon
Shin, Taein
Son, Keeyoung
Sim, Boogyo
Kim, Subin
Jeong, Seungtaek
Hwang, Chulsoon
Kim, Joungho
Source :
IEEE Transactions on Microwave Theory & Techniques. Nov2022, Vol. 70 Issue 11, p4772-4786. 15p.
Publication Year :
2022

Abstract

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedances seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on the positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated datasets. The computing time for training and data cost are critically decreased due to the scalability of the network. Due to its shared weight property and the context embedding process, the network can adapt to a larger scale of problems without additional training. For verification, the results are compared with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189480
Volume :
70
Issue :
11
Database :
Academic Search Index
Journal :
IEEE Transactions on Microwave Theory & Techniques
Publication Type :
Academic Journal
Accession number :
160652222
Full Text :
https://doi.org/10.1109/TMTT.2022.3202221