Back to Search Start Over

Biochemical characterization of the β-glucosidase Glu1B from Coptotermes formosanus produced in Pichia pastoris.

Authors :
Gutierrez-Gutierrez, David Alejandro
Fuentes-Garibay, José Antonio
Viader-Salvadó, José María
Guerrero-Olazarán, Martha
Source :
Enzyme & Microbial Technology. Feb2023, Vol. 163, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

β-glucosidases (E.C. 3.2.1.21) are enzymes that hydrolyze β-1,4-glycosidic bonds from non-reducing terminal residues in β- D -glucosides, with the release of glucose. β-glucosidases currently used for the saccharification of lignocellulosic biomass have low efficiency in hydrolyzing cellobiose and are inhibited by glucose, contrary to what would be desirable. In this work, we engineered Pichia pastoris strains to produce the β-glucosidase Glu1B from the termite Coptotermes formosanus , and biochemically characterized the recombinant enzyme. After 36 h of methanol induction in shake flasks, the P. pastoris KM71BGlu strain produced and secreted 4.1 U/mL (approx. 26 mg/L) of N-glycosylated β-glucosidase Glu1B. The recombinant product had an optimum pH of 5.0, optimum temperature of 50 °C, residual activity at 40 °C higher than 80 %, specific activity toward cellobiose of 431–597 U/mg protein, and a K i for glucose of 166 mM. The protein structure was stabilized by Mn2+ and glycerol. The high specific activity of the recombinant β-glucosidase Glu1B was correlated with the presence of specific residues in the glycone (Gln455) and aglycone (Thr193 and Hys252) binding sites, along with linker residues (Leu192, Ile251, and Phe333) between residues of these two sites. Moreover, the resistance to inhibition by glucose was correlated with the presence of specific gatekeeper residues in the active site (Met204, Gln360, Ala368, Ser369, Ser370, Leu450, and Arg451). Based on its biochemical properties and the possibility of its production in the P. pastoris expression system, the β-glucosidase produced and described in this work could be suitable as a supplement in the enzymatic hydrolysis of cellulose for saccharification of lignocellulosic biomass. • Coptotermes formosanus β-glucosidase Glu1B was produced in Pichia pastoris. • rCfBGlu showed high specific activity and moderate glucose tolerance. • High specific activity was correlated with binding site residues. • High specific activity was correlated with linker residues between binding residues. • Glucose tolerance was correlated with gatekeeper residues in the active site. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01410229
Volume :
163
Database :
Academic Search Index
Journal :
Enzyme & Microbial Technology
Publication Type :
Academic Journal
Accession number :
160734172
Full Text :
https://doi.org/10.1016/j.enzmictec.2022.110155