Back to Search Start Over

A Novel Cathode Material Synthesis and Thermal Characterization of (1-x-y) LiCo 1/3 Ti 1/3 Fe 1/3 PO 4 , xLi 2 MnPO 4 , yLiFePO 4 Composites for Lithium-Ion Batteries (LIBs).

Authors :
Li, Lu
Min, Xin
Monajjemi, Majid
Source :
Molecules. Dec2022, Vol. 27 Issue 23, p8486. 18p.
Publication Year :
2022

Abstract

Lithium-ion batteries are known for their high efficiency for storing electrical energy, especially for hybrid vehicles. In this research, the development of mixture composites in the cathode electrode of LIBs has been discussed and designed based on ternary solid solutions. We have given a novel synthesis and method preparation of cathode electrode materials to reduce costs while increasing the efficiency and simultaneity for the future of these technologies. The major problem in the LIBs is related to LiCoO2 as a popular cathode material that, although it has a high efficiency, is expensive and very toxic. Therefore, the usage of a lower weight of cobalt compared to the LiCoO2 cathode material is economically advantageous for this research. Several samples of the (1-x-y) LiCo1/3Ti1/3Fe1/3PO4 xLi2MnPO4 and yLiFePO4 system were synthesized via sol–gel experiments. Various stoichiometric amounts of the LiNO3, Li2MnPO4, Mn (Ac)2. 4H2O, Co (Ac)2.4H2O, Ti(NO3)2.6H2O and LiFePO4 have been used for several compositions of chrome, manganese, cobalt and titanium in 28 samples of (1-x-y) LiCo1/3Ti1/3Fe1/3PO4. By using thermal characterization, five samples have been selected due to their conditions in viewpoints of capacity and cyclability as well as activation energy, which is one of the major factors. These composites exhibited fairly consistent charge/discharge curves during the electrochemical testing. From the viewpoint of the physical and chemical properties, among these samples, the Li1.501Co0.389Ti0.055Fe0.055Mn0.501PO4 structure has a high efficiency compared to other compositions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
23
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
160740005
Full Text :
https://doi.org/10.3390/molecules27238486