Back to Search Start Over

Investigations of room temperature multiferroic and magneto-electric properties of (1-Φ) PZTFT-Φ CZFMO particulate composites.

Authors :
Bhoi, Krishnamayee
Pradhan, Dhiren K.
Chandrakanta, K.
Simhachalam, Narendra Babu
Singh, A. K.
Vishwakarma, P. N.
Kumar, A.
Rack, Philip D.
Pradhan, Dillip K.
Source :
Journal of Applied Physics. 1/14/2023, Vol. 133 Issue 2, p1-13. 13p.
Publication Year :
2023

Abstract

Multiferroic composites consisting of a single-phase multiferroic [0.6(PbZr0.53Ti0.47O3)-0.4(PbFe0.5Ta0.5)O3] as a matrix and a magnetostrictive phase (Co0.6Zn0.4Fe1.7Mn0.3O4) dispersed in the matrix are fabricated via hybrid synthesis technique. The structure and surface morphology studies using x-ray diffraction and field emission scanning electron microscopy techniques indicate the formation of 3-0 type particulate composites. Coexistence of soft-magnetic behavior and ferroelectric characteristics are confirmed for composites from magnetization vs magnetic field (M–H) and polarization vs electric field (P–E) measurements, respectively. Magneto-dielectric (MD) measurement shows significant changes in the dielectric properties with the application of a magnetic field, indicating the existence of strong MD behavior. The biquadratic nature of magneto-electric (ME) coupling is described by the Landau free energy equation arising from the strain transfer at the interfaces between the constituent phases. The direct magneto-electric voltage coefficient measurement also confirms very strong coupling between ferroelectricity and magnetism and supports the strain-mediated magneto-electric effect in composites. The Φ = 0.3 composite exhibits the maximum ME coefficient of 20.72 mV/cm Oe with MS = 24.62 emu/g, HC = 59.66 Oe, and piezoelectric coefficient value d33 = 19 pC/N. The strong magneto-electric effect along with low dielectric loss at room temperature in these composites suggests their suitability for multifunctional magneto-electric device applications such as magnetic sensors, etc. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
133
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
161307555
Full Text :
https://doi.org/10.1063/5.0120665