Back to Search Start Over

Sequestration of Gβγ by deubiquitinated arrestins into the nucleus as a novel desensitization mechanism of G protein–coupled receptors.

Authors :
Min, Xiao
Sun, Ningning
Wang, Shujie
Zhang, Xiaohan
Kim, Kyeong-Man
Source :
Cell Communication & Signaling. 1/19/2023, Vol. 21 Issue 1, p1-20. 20p.
Publication Year :
2023

Abstract

Background: Desensitization of G protein–coupled receptors (GPCRs) refers to a rapid attenuation of responsiveness that occurs with repeated or continuous exposure to agonists. GRK-mediated phosphorylation and subsequent binding with arrestins in the activated receptor cytoplasmic cavity in competition with G proteins has been suggested as the conventional mechanism of desensitization. Along with widely accepted conventional mechanism of desensitization, studies of various GPCRs including dopamine D2-like receptors (D2R, D3R, D4R) have suggested the existence of another desensitization mechanism. In this study, loss-of-function approaches and D2-like receptor mutants that display different desensitization properties were used to elucidate the molecular mechanisms responsible for desensitization. Results: Desensitization development entailed the signaling cascade composed of Src, PDK1, and Akt, the latter of which in turn interacted with USP33, an arrestin deubiquitinase, to promote arrestin deubiquitination. The deubiquitinated arrestin subsequently formed a complex with Gβγ and translocated to the nucleus via an importin complex, wherein it sequestered Gβγ from the receptor and Gα, thereby attenuating receptor signaling. As in D2-like receptors, both USP33 and importin β1 were involved in the desensitization of the β2 adrenoceptor. Conclusions: In addition to the conventional mechanism of desensitization, which occurs on the plasma membrane and in the cytosol, this study provides a new insight that another desensitization pathway in which nuclear trafficking plays a critical role is operating. It is plausible that multiple, complementary desensitization measures are in place to properly induce desensitization depending on receptor characteristics or the surrounding environment. -2RaxQqo6CD-C8c3iMTZGQ Video Abstract [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1478811X
Volume :
21
Issue :
1
Database :
Academic Search Index
Journal :
Cell Communication & Signaling
Publication Type :
Academic Journal
Accession number :
161397001
Full Text :
https://doi.org/10.1186/s12964-022-01013-z